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ABSTRACT

While there are several promising approaches for visual ob-
ject recognition the application of lightweight devices under
varying image conditions and using low quality images still
causes lots of problems to be solved. We introduce a new
retrieval mechanism including standard orientation sensors
helping the visual recognition process. We apply a view based
model of the objects and the matching of the query and can-
didate images is based on compact image descriptors coupled
with relative orientation. Besides introducing the concept we
show the effectiveness of our approach through two datasets
using noisy and blurred images.

Index Terms— object recognition, view centered recog-
nition, orientation sensor, image retrieval, COIL-100

1. INTRODUCTION

Optical recognition has many problems in general such as
scaling, illumination changes, partial occlusion, and back-
ground clutter, in case of capturing 3D objects with mobile
devices viewpoint variation and image noise (e.g. motion
blur due to hand shaking in poor lighting conditions) can de-
crease the recognition rate tremendously. Numerous recog-
nition algorithms have been developed, most of them apply
single image-based recognition. Single view methods may
easily fail when there is strong similarity between the cap-
tured images or when the background clutter or partial occlu-
sion masks distinctive features. Video based approaches can
use more views but suffer from the increased complexity. To
avoid big data/cloud processing type of solutions rises a need
for efficient lightweight but robust techniques that could run
in cheap embedded systems without a high performance back
end support. In our paper we discuss a multi-sensor approach
for video-based object recognition where a user moves a mo-
bile camera around a target object of interest, while keeping
the object roughly in the center of the viewfinder. The extrac-
tion of image features and the retrieval algorithm (using orien-
tation data) is running in the lightweight client. Two datasets
were used to show the efficiency of the proposal.
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2. RELATED WORKS

In an early paper of [1] recognition was achieved from video
sequences by employing a multiple hypothesis approach.
Appearance similarity, and pose transition smoothness con-
straints were used to estimate the probability of the measure-
ment being generated from a certain model hypothesis at each
time instant. A smooth gradient direction feature was used
to represent the appearance of objects while the pose was
modeled as a von Mises-Fisher distribution. Recognition was
achieved by choosing the hypothesis set that has accumulated
the maximum evidence at the end of the sequence. Unfor-
tunately, the testing of the method was carried out on four
objects only. In [2] authors created object models with the
help of SIFT points which are tracked from frame to frame.
Video matching is based on the comparison of every query
frame with all components of all models. While the accu-
racy was about 83% in case of 25 objects, the complexity is
high. In [3] also SIFT points were used as image features.
The underlying topological structure of an image dataset was
generated as a neighborhood graph. Motion continuity in
the query video was exploited to demonstrate that the results
obtained using a video sequence are much robust than using a
single image. The ratio of correct retrieval increased to 80%
with the method from only 20% of single image queries in
case of 100 objects. Complexity is not discussed in the paper.
In [6] in addition to the camera they used the accelerometer
and the magnetic sensor to recognize the landscape. Clustered
SUREF (Speeded Up Robust Features) features were quantized
using a vocabulary of visual words, learnt by k-means. For
tracking objects the FAST corner detector was combined with
sensor tracking. Because of the small storage capacity of the
mobile device a server-side service was needed to store the
large number of images. In [7] we showed that CEDD is
quite tolerant for different noises and can be computed in
today mobile platforms.

3. VIEW CENTERED RECOGNITION

There are two main approaches for the recognition of 3D
objects. In object centered representations, such as struc-
ture from motion methods, object features describe the 3D
structure or volume of the object. The main disadvantage of
these methods is that they require the computationally com-



plex simultaneous calibration of camera and 3D reconstruc-
tion. Contrary, in case of view centered representations, the
approach we follow, the outlook of the object is modeled from
different viewpoints so there is no effort taken to reconstruct
the (2D or 3D) structure of the object. Rather information
(orientation changes of the camera and image features) is col-
lected and organized to be used for object recognition.

3.1. Image Feature Extraction

We do not attempt to give a review on image feature extrac-
tion in our paper just list some possible methods we thought
would serve as the basis of a robust recognition engine.
In our previous tests [7] we investigated the following four
types of descriptors: MPEG-7 based methods (MPEG7_CLD,
MPEG7_EHD, MPEG7_SCD, MPEG7 _Fusion); Local fea-
ture based methods (SURF, SURFVW [8], SIFT ); Com-
pact Composite Descriptors [8] [9] (CompactCEDD, CEDD,
CompactFCTH, FCTH, JCD, CCD Fusion, CompactVW);
and others (Tamura texture descriptor, Color Correlogram
and Correlation (ACCC) [10], MPEG7-CCD_Fusion [9]).
Unfortunately, the SIFT based method ran extremely slow
(about two orders slower than compact descriptors) in initial
tests compared to others and its performance was not better
than the average of all. Even it seemed to be very sensitive
to motion blur so it was neglected in our further experiments.
Please note that although there are several much faster lo-
cal descriptors ([11]) than SIFT, the selection of the most
appropriate one is out of focus of this paper. The chosen
CEDD descriptor, found quite robust in previous works, com-
bines color and texture information of a rectangular region
in histograms in a vector of length 144. Texture informa-
tion of image blocks is modeled by classifying them into six
classes: non-edge, vertical, horizontal, 45-degree diagonal,
135-degree diagonal and nondirectional edges. Each class
is described by 24 bin color histogram based on fuzzy color
selection. For more details on CEDD see [8].

3.2. Similarity of Descriptors

According to previous tests the similarity of two CEDD de-
scriptor vectors are efficiently given by the Tanimoto Coeffi-
cient [9]. Let g; be the descriptor of the ith frame from the
query and c; be the descriptor of the jth frame of a candidate.
The Tanimoto Coefficient is then:
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Even if the sole of the object is fixed, the relative orienta-
tion of the camera (compared to the object) can be changed
from time to time and thus the rotation of the camera can be
described by pan, tilt, and roll. While we can get rid of the
problem of different pan and tilt settings if object tracking is
applied (see in later Section) camera roll should be handled

differently. Basically, CEDD is not rotation invariant but with
the modification of the Tanimoto distance rough rotation in-
variance can be achieved:
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where roll € 0°,45°,90°,135° and g; oy means that orien-
tation specific texture classes are shifted with some positions
within the CEDD vector.

3.3. Model Generation

In our model we have not only one but several CEDD de-
scriptors of the objects extracted from different viewing di-
rections (see Fig. 1 for illustration). In each case the object
is located in the center of the image while the elevation and
azimuth can be varied due to camera tilt, pan, and translation.
Each descriptor is coupled with the orientation data giving
the elevation and azimuth in degree measured with the digi-
tal compass and acceleration sensors. Azimuth angle should
be considered as a relative value since the object can be ro-
tated, that is we need an azimuth matching mechanism (built
into a modified similarity function in the next Section). We
used the built-in accelerometer and compass sensors to mea-
sure the orientation of the camera for each view.To reduce the
database size several visually similar frames can be removed
from the database. Let F'v and F'j be two consecutive frames
taken at different azimuths. If the difference in T'(Fi, F'j)
(measured by the Tanimoto Coefficient)is below threshold th
then F'j is simply deleted. As shown in Fig. 2 the difference
between F'1 and {F'2, F'3, F'4} is less than th but it is greater
for F'5, then frames { F'2, F'3, F'4} are deleted from the object
model.

Camera Viewpoint

Fig. 1. Model generation setup
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Fig. 2. An example of model size reduction.



3.4. Retrieval: The Similarity of Model and Query

In our application model an object is placed on a surface (e.g.
table) and the camera moves around it keeping the object
roughly in the center. The target object segmentation can be
easily carried out by setting a target rectangle manually in the
first frame then applying tracking such as Camshift [13] with
low complexity. Without using temporal or orientational in-
formation one may use several frames from the query video to
compute the average Tanimoto Coefficient resulting in com-
plexity O(N.. - N} - N§) where N, is the number of candi-
date objects, NJ’Z is the number of frames in query and V¥ is
the number of frames in candidates (referring to object model
size). Contrary, we show that testing only one frame from the
query against all model frames then using the known relative
orientation information for the other frames results in much
lower complexity but similar hit rate. That is we defined the
following similarity function:

multi—sensor
T (

min; T'(g;, ¢;) + ZVk,k;éi T(qr, Ca(r))

Q7 c) =
) ~;
3)
where 7 is randomly selected (in our current implementation)
and «(k) means the frame which is at the same (or very close)
relative orientation in the candidate model to 7 as k to ¢ in
the query. The complexity of the multi-sensor method can be
described as: O(N,- (N§ + (2 (Nf —1)))). Since there is no
guarantee that we ﬁnd a frame at the exact relative position in
the candidate we used the best matching of the left and right
neighbors in the closest available orientations explaining the
multiplication by 2 in the above complexity. For comparisons
we also tested a similarity function (multi-sensor, full search)
where all frames from the query were used the same way:
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where (k) denotes a frame at orientation which is at 5 degree
relative to the orientation of the frame k.

4. EXPERIMENTS

4.1. Datasets

We had two datasets: The first included 16 objects (fully 3D-
shaped) like some types of cars, headset, books, coffee cups,
stapler, plastic bags, computer mouse, pens. Between 44-73
views per object were captured from the same elevation but
from different azimuth leading to approximately 900 images.
Objects were centered and a bounding box was manually de-
fined for each image. Image sizes and side ratios varied a lot
as shown in Fig. 3. As we can see the object size, shape, color,
contrast can vary from view to view. The background of the
objects were only roughly uniform and the surface of objects
was sometimes glossy. The second database is the COIL-100

dataset [14] which includes 100 different objects, where 72
images of each object were taken at pose intervals of 5°. Fig.
4 shows some examples objects from COIL-100.

Fig. 3. Test object examples in increasing ID order.
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Fig. 4. Test object examples in COIL- 100 dataset.

The query dataset is composed of 10 randomly selected
images of each object strongly distorted with motion blur and
additive Gaussian noise (the queries were left out from possi-
ble candidates for testing reasons). We used the built in func-
tion in Matlab imnoise with standard deviation sd = 0.012
to apply additive Gaussian noise on the clear dataset and cre-
ated also distorted images with motion blur by different length
pixel len = 15), with an angle of 6 degrees in a counterclock-
wise direction (f = 20). Some examples of the queries are
shown in Fig. 5.

Fig. 5. Noisy and blurred query examples from the two
datasets.

4.2. Model size

Fig. 6 contains the number of frames in the smaller dataset in
case of each object category at different T'h threshold settings.
The smallest number (7) at threshold 20 was found in case
of the white-green bus while the largest number (20) for the
green pen waht can be reasoned by the visual examination of
the objects.

4.3. Retrieval Performance

We show the hit rate and the running time of the multi-
sensor method compared to the method when all frames of
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Fig. 6. Models sizes before and after frame reduction.

the query are used for retrieval without orientation data ("im-
age” method) and compared to the method with all frames
querying with orientation data ("Multi-sensor Full search”
method). The effect of applying different T'h-s and NJ‘Z-s is
also explored. A Samsung SM-T311 tablet equipped with
Android 4.2.2 Jelly Bean, 1 GB RAM, and ARM Cortex A9
Dual-Core 1.5 GHz Processor was used in the tests. There are
two graphs illustrating the hit rate vs. the number of frames
in the query. As Fig. 7 shows for motion blurred images
retrieval performance is greatly affected by the model size
and as N? goes from 1 to 8 the hit rate increases about 5%.
The strong additive noise resulted in lower values, especially
when model size was reduced by th. In our retrieval we did
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Fig. 7. Average hit rate for strong motion blur (top) and addi-
tive Gaussian noise (bottom).

not apply structuring of data, e.g. decision trees can even de-
crease the running time. Fig 9 illustrates the average running
time (based on 10 queries) for the different retrieval methods.
(Please note that the extraction of the CEDD descriptors,
which is about 0.4 sec on the mobile platform, is not included
in these data.) It is clearly visible that as the number of query
frames is increasing the advantage of the multi-sensor method
is growing while resulting practically the same retrieval rate.
It means that using the multiple-sensor method at [V ;Z = 8 we
get the best performance at the running time of NJ'Z = 2 of the
only-images approach. (Please note that in case of Gaussian
noise the highest hit rate would be above at NJ? = 8§, not

investigated in this paper.)

Finally, we repeated our test on the COIL-100 database (see
Fig. 8). We found our approach superior to other methods,
unfortunately the analysis could not be included due to the
limited length.
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Fig. 8. Average hit rate for strong motion blur (top) and strong
additive Gaussian noise (bottom) for the COIL-100 image set.
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Fig. 9. Average running time for linear image search with
different approaches and model size.

5. CONCLUSIONS

Our motivation was to create an object recognition model
with lightweight solutions. Thus a compact global image de-
scriptor was coupled with orientation data of the camera. This
way the descriptor size and the number of matching steps
could be kept low for video inputs. For evalution two datasets
were used: the standard COIL-100 dataset and our own test
data either with strong distortions. For both datasets we found
that the multi-sensor method achieved the same or better hit
rate than the full search with a fraction of running time.
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